/* $NetBSD: sha2.c,v 1.6 2020/05/04 01:37:54 agc Exp $ */ /* $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $ */ /* * sha2.c * * Version 1.0.0beta1 * * Written by Aaron D. Gifford * * Copyright 2000 Aaron D. Gifford. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include #include #include #include "sha2.h" # undef htobe32 # undef htobe64 # undef be32toh # undef be64toh #ifndef __CAST #define __CAST(__dt, __st) ((__dt)(__st)) /* srsly? */ #endif static __inline void be32encode(void *buf, uint32_t u) { uint8_t *p = __CAST(uint8_t *, buf); p[0] = __CAST(uint8_t, ((u >> 24) & 0xff)); p[1] = __CAST(uint8_t, ((u >> 16) & 0xff)); p[2] = __CAST(uint8_t, ((u >> 8) & 0xff)); p[3] = __CAST(uint8_t, (u & 0xff)); } static __inline void be64encode(void *buf, uint64_t u) { uint8_t *p = __CAST(uint8_t *, buf); be32encode(p, __CAST(uint32_t, (u >> 32))); be32encode(p + 4, __CAST(uint32_t, (u & 0xffffffffULL))); } static uint32_t htobe32(uint32_t x) { uint8_t p[4]; memcpy(p, &x, 4); return (((uint32_t)p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]); } static uint64_t htobe64(uint64_t x) { uint8_t p[8]; uint32_t u, v; memcpy(p, &x, 8); u = (((uint32_t)p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]); v = (((uint32_t)p[4] << 24) | (p[5] << 16) | (p[6] << 8) | p[7]); return ((((uint64_t)u) << 32) | v); } static uint32_t be32toh(uint32_t x) { return htobe32(x); } static uint64_t be64toh(uint64_t x) { return htobe64(x); } /*** SHA-256/384/512 Various Length Definitions ***********************/ /* NOTE: Most of these are in sha2.h */ #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) /* * Macro for incrementally adding the unsigned 64-bit integer n to the * unsigned 128-bit integer (represented using a two-element array of * 64-bit words): */ #define ADDINC128(w,n) { \ (w)[0] += (uint64_t)(n); \ if ((w)[0] < (n)) { \ (w)[1]++; \ } \ } /*** THE SIX LOGICAL FUNCTIONS ****************************************/ /* * Bit shifting and rotation (used by the six SHA-XYZ logical functions: * * NOTE: The naming of R and S appears backwards here (R is a SHIFT and * S is a ROTATION) because the SHA-256/384/512 description document * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this * same "backwards" definition. */ /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ #define R(b,x) ((x) >> (b)) /* 32-bit Rotate-right (used in SHA-256): */ #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) /* Four of six logical functions used in SHA-256: */ #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) /* Four of six logical functions used in SHA-384 and SHA-512: */ #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) /*** INTERNAL FUNCTION PROTOTYPES *************************************/ /* NOTE: These should not be accessed directly from outside this * library -- they are intended for private internal visibility/use * only. */ static void netpgpv_SHA512_Last(NETPGPV_SHA512_CTX *); void netpgpv_SHA224_Transform(NETPGPV_SHA224_CTX *, const uint32_t*); void netpgpv_SHA256_Transform(NETPGPV_SHA256_CTX *, const uint32_t*); void netpgpv_SHA384_Transform(NETPGPV_SHA384_CTX *, const uint64_t*); void netpgpv_SHA512_Transform(NETPGPV_SHA512_CTX *, const uint64_t*); /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ /* Hash constant words K for SHA-256: */ static const uint32_t K256[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Initial hash value H for SHA-224: */ static const uint32_t sha224_initial_hash_value[8] = { 0xc1059ed8UL, 0x367cd507UL, 0x3070dd17UL, 0xf70e5939UL, 0xffc00b31UL, 0x68581511UL, 0x64f98fa7UL, 0xbefa4fa4UL }; /* Initial hash value H for SHA-256: */ static const uint32_t sha256_initial_hash_value[8] = { 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL }; /* Hash constant words K for SHA-384 and SHA-512: */ static const uint64_t K512[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; /* Initial hash value H for SHA-384 */ static const uint64_t sha384_initial_hash_value[8] = { 0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL, 0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL, 0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL, 0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL }; /* Initial hash value H for SHA-512 */ static const uint64_t sha512_initial_hash_value[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; /*** SHA-256: *********************************************************/ int netpgpv_SHA256_Init(NETPGPV_SHA256_CTX *context) { if (context == NULL) return 1; memcpy(context->state, sha256_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH)); memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH)); context->bitcount = 0; return 1; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-256 round macros: */ #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ W256[j] = be32toh(*data); \ ++data; \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ K256[j] + W256[j]; \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ #define ROUND256(a,b,c,d,e,f,g,h) \ s0 = W256[(j+1)&0x0f]; \ s0 = sigma0_256(s0); \ s1 = W256[(j+14)&0x0f]; \ s1 = sigma1_256(s1); \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ void netpgpv_SHA256_Transform(NETPGPV_SHA256_CTX *context, const uint32_t *data) { uint32_t a, b, c, d, e, f, g, h, s0, s1; uint32_t T1, *W256; int j; W256 = (uint32_t *)context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { /* Rounds 0 to 15 (unrolled): */ ROUND256_0_TO_15(a,b,c,d,e,f,g,h); ROUND256_0_TO_15(h,a,b,c,d,e,f,g); ROUND256_0_TO_15(g,h,a,b,c,d,e,f); ROUND256_0_TO_15(f,g,h,a,b,c,d,e); ROUND256_0_TO_15(e,f,g,h,a,b,c,d); ROUND256_0_TO_15(d,e,f,g,h,a,b,c); ROUND256_0_TO_15(c,d,e,f,g,h,a,b); ROUND256_0_TO_15(b,c,d,e,f,g,h,a); } while (j < 16); /* Now for the remaining rounds to 64: */ do { ROUND256(a,b,c,d,e,f,g,h); ROUND256(h,a,b,c,d,e,f,g); ROUND256(g,h,a,b,c,d,e,f); ROUND256(f,g,h,a,b,c,d,e); ROUND256(e,f,g,h,a,b,c,d); ROUND256(d,e,f,g,h,a,b,c); ROUND256(c,d,e,f,g,h,a,b); ROUND256(b,c,d,e,f,g,h,a); } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; } #else /* SHA2_UNROLL_TRANSFORM */ void netpgpv_SHA256_Transform(NETPGPV_SHA256_CTX *context, const uint32_t *data) { uint32_t a, b, c, d, e, f, g, h, s0, s1; uint32_t T1, T2, *W256; int j; W256 = (uint32_t *)(void *)context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { W256[j] = be32toh(*data); ++data; /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W256[(j+1)&0x0f]; s0 = sigma0_256(s0); s1 = W256[(j+14)&0x0f]; s1 = sigma1_256(s1); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; } #endif /* SHA2_UNROLL_TRANSFORM */ int netpgpv_SHA256_Update(NETPGPV_SHA256_CTX *context, const uint8_t *data, size_t len) { unsigned int freespace, usedspace; if (len == 0) { /* Calling with no data is valid - we do nothing */ return 1; } usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH); if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA256_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ memcpy(&context->buffer[usedspace], data, (size_t)(freespace)); context->bitcount += freespace << 3; len -= freespace; data += freespace; netpgpv_SHA256_Transform(context, (uint32_t *)(void *)context->buffer); } else { /* The buffer is not yet full */ memcpy(&context->buffer[usedspace], data, len); context->bitcount += len << 3; /* Clean up: */ usedspace = freespace = 0; return 1; } } /* * Process as many complete blocks as possible. * * Check alignment of the data pointer. If it is 32bit aligned, * SHA256_Transform can be called directly on the data stream, * otherwise enforce the alignment by copy into the buffer. */ if ((uintptr_t)data % 4 == 0) { while (len >= SHA256_BLOCK_LENGTH) { netpgpv_SHA256_Transform(context, (const uint32_t *)(const void *)data); context->bitcount += SHA256_BLOCK_LENGTH << 3; len -= SHA256_BLOCK_LENGTH; data += SHA256_BLOCK_LENGTH; } } else { while (len >= SHA256_BLOCK_LENGTH) { memcpy(context->buffer, data, SHA256_BLOCK_LENGTH); netpgpv_SHA256_Transform(context, (const uint32_t *)(const void *)context->buffer); context->bitcount += SHA256_BLOCK_LENGTH << 3; len -= SHA256_BLOCK_LENGTH; data += SHA256_BLOCK_LENGTH; } } if (len > 0) { /* There's left-overs, so save 'em */ memcpy(context->buffer, data, len); context->bitcount += len << 3; } /* Clean up: */ usedspace = freespace = 0; return 1; } static int netpgpv_SHA224_256_Final(uint8_t digest[], NETPGPV_SHA256_CTX *context, size_t len) { unsigned int usedspace; size_t i; /* If no digest buffer is passed, we don't bother doing this: */ if (digest != NULL) { usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH); context->bitcount = htobe64(context->bitcount); if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ memset(&context->buffer[usedspace], 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH - usedspace)); } else { if (usedspace < SHA256_BLOCK_LENGTH) { memset(&context->buffer[usedspace], 0, (size_t)(SHA256_BLOCK_LENGTH - usedspace)); } /* Do second-to-last transform: */ netpgpv_SHA256_Transform(context, (uint32_t *)(void *)context->buffer); /* And set-up for the last transform: */ memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH)); } } else { /* Set-up for the last transform: */ memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH)); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Set the bit count: */ memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], &context->bitcount, sizeof(context->bitcount)); /* Final transform: */ netpgpv_SHA256_Transform(context, (uint32_t *)(void *)context->buffer); for (i = 0; i < len / 4; i++) be32encode(digest + 4 * i, context->state[i]); } /* Clean up state data: */ memset(context, 0, sizeof(*context)); usedspace = 0; return 1; } int netpgpv_SHA256_Final(uint8_t digest[], NETPGPV_SHA256_CTX *context) { return netpgpv_SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH); } /*** SHA-224: *********************************************************/ int netpgpv_SHA224_Init(NETPGPV_SHA224_CTX *context) { if (context == NULL) return 1; /* The state and buffer size are driven by SHA256, not by SHA224. */ memcpy(context->state, sha224_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH)); memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH)); context->bitcount = 0; return 1; } int netpgpv_SHA224_Update(NETPGPV_SHA224_CTX *context, const uint8_t *data, size_t len) { return netpgpv_SHA256_Update((NETPGPV_SHA256_CTX *)context, data, len); } void netpgpv_SHA224_Transform(NETPGPV_SHA224_CTX *context, const uint32_t *data) { netpgpv_SHA256_Transform((NETPGPV_SHA256_CTX *)context, data); } int netpgpv_SHA224_Final(uint8_t digest[], NETPGPV_SHA224_CTX *context) { return netpgpv_SHA224_256_Final(digest, (NETPGPV_SHA256_CTX *)context, SHA224_DIGEST_LENGTH); } /*** SHA-512: *********************************************************/ int netpgpv_SHA512_Init(NETPGPV_SHA512_CTX *context) { if (context == NULL) return 1; memcpy(context->state, sha512_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH)); memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH)); context->bitcount[0] = context->bitcount[1] = 0; return 1; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-512 round macros: */ #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ W512[j] = be64toh(*data); \ ++data; \ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ K512[j] + W512[j]; \ (d) += T1, \ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ j++ #define ROUND512(a,b,c,d,e,f,g,h) \ s0 = W512[(j+1)&0x0f]; \ s0 = sigma0_512(s0); \ s1 = W512[(j+14)&0x0f]; \ s1 = sigma1_512(s1); \ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ j++ void netpgpv_SHA512_Transform(NETPGPV_SHA512_CTX *context, const uint64_t *data) { uint64_t a, b, c, d, e, f, g, h, s0, s1; uint64_t T1, *W512 = (uint64_t *)context->buffer; int j; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { ROUND512_0_TO_15(a,b,c,d,e,f,g,h); ROUND512_0_TO_15(h,a,b,c,d,e,f,g); ROUND512_0_TO_15(g,h,a,b,c,d,e,f); ROUND512_0_TO_15(f,g,h,a,b,c,d,e); ROUND512_0_TO_15(e,f,g,h,a,b,c,d); ROUND512_0_TO_15(d,e,f,g,h,a,b,c); ROUND512_0_TO_15(c,d,e,f,g,h,a,b); ROUND512_0_TO_15(b,c,d,e,f,g,h,a); } while (j < 16); /* Now for the remaining rounds up to 79: */ do { ROUND512(a,b,c,d,e,f,g,h); ROUND512(h,a,b,c,d,e,f,g); ROUND512(g,h,a,b,c,d,e,f); ROUND512(f,g,h,a,b,c,d,e); ROUND512(e,f,g,h,a,b,c,d); ROUND512(d,e,f,g,h,a,b,c); ROUND512(c,d,e,f,g,h,a,b); ROUND512(b,c,d,e,f,g,h,a); } while (j < 80); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; } #else /* SHA2_UNROLL_TRANSFORM */ void netpgpv_SHA512_Transform(NETPGPV_SHA512_CTX *context, const uint64_t *data) { uint64_t a, b, c, d, e, f, g, h, s0, s1; uint64_t T1, T2, *W512 = (void *)context->buffer; int j; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { W512[j] = be64toh(*data); ++data; /* Apply the SHA-512 compression function to update a..h */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W512[(j+1)&0x0f]; s0 = sigma0_512(s0); s1 = W512[(j+14)&0x0f]; s1 = sigma1_512(s1); /* Apply the SHA-512 compression function to update a..h */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 80); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; } #endif /* SHA2_UNROLL_TRANSFORM */ int netpgpv_SHA512_Update(NETPGPV_SHA512_CTX *context, const uint8_t *data, size_t len) { unsigned int freespace, usedspace; if (len == 0) { /* Calling with no data is valid - we do nothing */ return 1; } usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH); if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA512_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ memcpy(&context->buffer[usedspace], data, (size_t)(freespace)); ADDINC128(context->bitcount, freespace << 3); len -= freespace; data += freespace; netpgpv_SHA512_Transform(context, (uint64_t *)(void *)context->buffer); } else { /* The buffer is not yet full */ memcpy(&context->buffer[usedspace], data, len); ADDINC128(context->bitcount, len << 3); /* Clean up: */ usedspace = freespace = 0; return 1; } } /* * Process as many complete blocks as possible. * * Check alignment of the data pointer. If it is 64bit aligned, * SHA512_Transform can be called directly on the data stream, * otherwise enforce the alignment by copy into the buffer. */ if ((uintptr_t)data % 8 == 0) { while (len >= SHA512_BLOCK_LENGTH) { netpgpv_SHA512_Transform(context, (const uint64_t*)(const void *)data); ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); len -= SHA512_BLOCK_LENGTH; data += SHA512_BLOCK_LENGTH; } } else { while (len >= SHA512_BLOCK_LENGTH) { memcpy(context->buffer, data, SHA512_BLOCK_LENGTH); netpgpv_SHA512_Transform(context, (const void *)context->buffer); ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); len -= SHA512_BLOCK_LENGTH; data += SHA512_BLOCK_LENGTH; } } if (len > 0) { /* There's left-overs, so save 'em */ memcpy(context->buffer, data, len); ADDINC128(context->bitcount, len << 3); } /* Clean up: */ usedspace = freespace = 0; return 1; } static void netpgpv_SHA512_Last(NETPGPV_SHA512_CTX *context) { unsigned int usedspace; usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH); context->bitcount[0] = htobe64(context->bitcount[0]); context->bitcount[1] = htobe64(context->bitcount[1]); if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ memset(&context->buffer[usedspace], 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace)); } else { if (usedspace < SHA512_BLOCK_LENGTH) { memset(&context->buffer[usedspace], 0, (size_t)(SHA512_BLOCK_LENGTH - usedspace)); } /* Do second-to-last transform: */ netpgpv_SHA512_Transform(context, (uint64_t *)(void *)context->buffer); /* And set-up for the last transform: */ memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH - 2)); } } else { /* Prepare for final transform: */ memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH)); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Store the length of input data (in bits): */ memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], &context->bitcount[1], sizeof(context->bitcount[1])); memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], &context->bitcount[0], sizeof(context->bitcount[0])); /* Final transform: */ netpgpv_SHA512_Transform(context, (uint64_t *)(void *)context->buffer); } int netpgpv_SHA512_Final(uint8_t digest[], NETPGPV_SHA512_CTX *context) { size_t i; /* If no digest buffer is passed, we don't bother doing this: */ if (digest != NULL) { netpgpv_SHA512_Last(context); /* Save the hash data for output: */ for (i = 0; i < 8; ++i) be64encode(digest + 8 * i, context->state[i]); } /* Zero out state data */ memset(context, 0, sizeof(*context)); return 1; } /*** SHA-384: *********************************************************/ int netpgpv_SHA384_Init(NETPGPV_SHA384_CTX *context) { if (context == NULL) return 1; memcpy(context->state, sha384_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH)); memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH)); context->bitcount[0] = context->bitcount[1] = 0; return 1; } int netpgpv_SHA384_Update(NETPGPV_SHA384_CTX *context, const uint8_t *data, size_t len) { return netpgpv_SHA512_Update((NETPGPV_SHA512_CTX *)context, data, len); } void netpgpv_SHA384_Transform(NETPGPV_SHA512_CTX *context, const uint64_t *data) { netpgpv_SHA512_Transform((NETPGPV_SHA512_CTX *)context, data); } int netpgpv_SHA384_Final(uint8_t digest[], NETPGPV_SHA384_CTX *context) { size_t i; /* If no digest buffer is passed, we don't bother doing this: */ if (digest != NULL) { netpgpv_SHA512_Last((NETPGPV_SHA512_CTX *)context); /* Save the hash data for output: */ for (i = 0; i < 6; ++i) be64encode(digest + 8 * i, context->state[i]); } /* Zero out state data */ memset(context, 0, sizeof(*context)); return 1; }