/* * top - a top users display for Unix * * SYNOPSIS: For DragonFly 1.2 and later * * DESCRIPTION: * Originally written for BSD4.4 system by Christos Zoulas. * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider * Order support hacked in from top-3.5beta6/machine/m_aix41.c * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) * * LIBS: -lkvm * * AUTHOR: Christos Zoulas * Steven Wallace * Wolfram Schneider * Hiten Pandya * * $NetBSD: m_dragonfly.c,v 1.3 2010/12/27 13:15:05 obache Exp $ * $DragonFly: src/usr.bin/top/machine.c,v 1.18 2005/11/14 18:50:18 dillon Exp $ */ #include #include #include #include #include "os.h" #include #include #include #include #include #include #include #include #include #include #include #include #include /* Swap */ #include #include #include /* for changes in kernel structures */ #include #include #include "top.h" #include "machine.h" #include "utils.h" static int check_nlist(struct nlist *); static int getkval(unsigned long, int *, int, char *); extern char* printable(char *); int swapmode(int *retavail, int *retfree); static int smpmode; static int namelength; static int cmdlength; /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* declarations for load_avg */ #include "loadavg.h" /* define what weighted cpu is. */ #define weighted_cpu(pct, pp) (pp->kp_swtime == 0 ? 0.0 : \ ((pct) / (1.0 - exp(pp->kp_swtime * logcpu)))) /* what we consider to be process size: */ #define PROCSIZE(pp) (pp->kp_vm_map_size / 1024) /* * These definitions control the format of the per-process area */ static char smp_header[] = " PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND"; #define smp_Proc_format \ "%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s" static char up_header[] = " PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; #define up_Proc_format \ "%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s" /* process state names for the "STATE" column of the display */ /* the extra nulls in the string "run" are for adding a slash and the processor number when needed */ char *state_abbrev[] = { "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", }; static kvm_t *kd; /* values that we stash away in _init and use in later routines */ static double logcpu; static long lastpid; static long cnt; static int ccpu; /* these are for calculating cpu state percentages */ static struct kinfo_cputime cp_time, cp_old; /* these are for detailing the process states */ int process_states[6]; char *procstatenames[] = { "", " starting, ", " running, ", " sleeping, ", " stopped, ", " zombie, ", NULL }; /* these are for detailing the cpu states */ #define CPU_STATES 5 int cpu_states[CPU_STATES]; char *cpustatenames[CPU_STATES + 1] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ long memory_stats[7]; char *memorynames[] = { "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", NULL }; long swap_stats[7]; char *swapnames[] = { /* 0 1 2 3 4 5 */ "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", NULL }; /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc *pbase; static struct kinfo_proc **pref; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) /* sorting orders. first is default */ char *ordernames[] = { "cpu", "size", "res", "time", "pri", NULL }; /* compare routines */ int proc_compare(), compare_size(), compare_res(), compare_time(), compare_prio(); int (*proc_compares[])() = { proc_compare, compare_size, compare_res, compare_time, compare_prio, NULL }; static void cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new, struct kinfo_cputime *old) { struct kinfo_cputime diffs; int i; uint64_t total_change, half_total; /* initialization */ total_change = 0; diffs.cp_user = new->cp_user - old->cp_user; diffs.cp_nice = new->cp_nice - old->cp_nice; diffs.cp_sys = new->cp_sys - old->cp_sys; diffs.cp_intr = new->cp_intr - old->cp_intr; diffs.cp_idle = new->cp_idle - old->cp_idle; total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys + diffs.cp_intr + diffs.cp_idle; old->cp_user = new->cp_user; old->cp_nice = new->cp_nice; old->cp_sys = new->cp_sys; old->cp_intr = new->cp_intr; old->cp_idle = new->cp_idle; /* avoid divide by zero potential */ if (total_change == 0) total_change = 1; /* calculate percentages based on overall change, rounding up */ half_total = total_change >> 1; out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change); out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change); out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change); out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change); out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change); } int machine_init(struct statics *statics) { register int i = 0; register int pagesize; size_t modelen; struct passwd *pw; struct timeval boottime; int mib[2]; size_t bt_size; modelen = sizeof(smpmode); if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 && sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) || modelen != sizeof(smpmode)) smpmode = 0; while ((pw = getpwent()) != NULL) { if (strlen(pw->pw_name) > namelength) namelength = strlen(pw->pw_name); } if (namelength < 8) namelength = 8; if (smpmode && namelength > 13) namelength = 13; else if (namelength > 15) namelength = 15; if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL) return -1; if (kinfo_get_sched_ccpu(&ccpu)) { fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n"); return(-1); } /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(loaddouble(ccpu)); pbase = NULL; pref = NULL; nproc = 0; onproc = -1; /* get the page size with "getpagesize" and calculate pageshift from it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; statics->swap_names = swapnames; statics->order_names = ordernames; /* * Print how long system has been up. * (Found by looking getting "boottime" from the kernel) */ mib[0] = CTL_KERN; mib[1] = KERN_BOOTTIME; bt_size = sizeof(boottime); if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 && boottime.tv_sec != 0) { statics->boottime = boottime.tv_sec; } /* all done! */ return(0); } char *format_header(register char *uname_field) { register char *ptr; static char Header[128]; snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header, namelength, namelength, uname_field); if (screen_width <= 79) cmdlength = 80; else cmdlength = 89; cmdlength = cmdlength - strlen(Header) + 6; return Header; } static int swappgsin = -1; static int swappgsout = -1; extern struct timeval timeout; void get_system_info(struct system_info *si) { long total; if (kinfo_get_sched_cputime(&cp_time)) err(1, "kinfo_get_sched_cputime failed"); getloadavg(si->load_avg, 3); lastpid = 0; /* convert cp_time counts to percentages */ cputime_percentages(cpu_states, &cp_time, &cp_old); /* sum memory & swap statistics */ { struct vmmeter vmm; struct vmstats vms; size_t vms_size = sizeof(vms); size_t vmm_size = sizeof(vmm); static unsigned int swap_delay = 0; static int swapavail = 0; static int swapfree = 0; static int bufspace = 0; if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0)) err(1, "sysctlbyname: vm.vmstats"); if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0)) err(1, "sysctlbyname: vm.vmmeter"); if (kinfo_get_vfs_bufspace(&bufspace)) err(1, "kinfo_get_vfs_bufspace"); /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(vms.v_active_count); memory_stats[1] = pagetok(vms.v_inactive_count); memory_stats[2] = pagetok(vms.v_wire_count); memory_stats[3] = pagetok(vms.v_cache_count); memory_stats[4] = bufspace / 1024; memory_stats[5] = pagetok(vms.v_free_count); memory_stats[6] = -1; /* first interval */ if (swappgsin < 0) { swap_stats[4] = 0; swap_stats[5] = 0; } /* compute differences between old and new swap statistic */ else { swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin))); swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout))); } swappgsin = vmm.v_swappgsin; swappgsout = vmm.v_swappgsout; /* call CPU heavy swapmode() only for changes */ if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { swap_stats[3] = swapmode(&swapavail, &swapfree); swap_stats[0] = swapavail; swap_stats[1] = swapavail - swapfree; swap_stats[2] = swapfree; } swap_delay = 1; swap_stats[6] = -1; } /* set arrays and strings */ si->cpustates = cpu_states; si->memory = memory_stats; si->swap = swap_stats; if(lastpid > 0) { si->last_pid = lastpid; } else { si->last_pid = -1; } } static struct handle handle; caddr_t get_process_info(struct system_info *si, struct process_select *sel, int compare_index) { register int i; register int total_procs; register int active_procs; register struct kinfo_proc **prefp; register struct kinfo_proc *pp; /* these are copied out of sel for speed */ int show_idle; int show_self; int show_system; int show_uid; pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); if (nproc > onproc) pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *) * (onproc = nproc)); if (pref == NULL || pbase == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_self = 0; show_system = sel->system; show_uid = sel->uid != -1; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; memset((char *)process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { /* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. Processes with P_SYSTEM set are system * processes---these get ignored unless show_sysprocs is set. */ if (((show_self != pp->kp_pid) && (show_system || ((pp->kp_flags & P_SYSTEM) == 0)))) { total_procs++; process_states[(unsigned char) pp->kp_stat]++; if (((show_idle || (pp->kp_lwp.kl_pctcpu != 0) || (pp->kp_stat == LSRUN)) && (!show_uid || pp->kp_ruid == (uid_t)sel->uid))) { *prefp++ = pp; active_procs++; } } } qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), proc_compares[compare_index]); /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return((caddr_t)&handle); } char fmt[128]; /* static area where result is built */ char *format_next_process(caddr_t handle, char *(*get_userid) (int)) { struct kinfo_proc *pp; long cputime; double pct; struct handle *hp; char status[16]; char const *wrapper; int state; int nice; /* find and remember the next proc structure */ hp = (struct handle *)handle; pp = *(hp->next_proc++); hp->remaining--; /* set the wrapper for the process/thread name */ if (pp->kp_flags & P_SWAPPEDOUT) wrapper = "[]"; /* swapped process [pname] */ else if (((pp->kp_flags & P_SYSTEM) != 0) && (pp->kp_lwp.kl_pid > 0)) wrapper = "()"; /* system process (pname) */ else wrapper = NULL; /* get the process's command name */ if (wrapper != NULL) { char *comm = pp->kp_comm; #define COMSIZ sizeof(pp->kp_comm) char buf[COMSIZ]; (void) strncpy(buf, comm, COMSIZ); comm[0] = wrapper[0]; (void) strncpy(&comm[1], buf, COMSIZ - 2); comm[COMSIZ - 2] = '\0'; (void) strncat(comm, &wrapper[1], COMSIZ - 1); comm[COMSIZ - 1] = '\0'; } /* * Convert the process's runtime from microseconds to seconds. This * time includes the interrupt time although that is not wanted here. * ps(1) is similarly sloppy. */ cputime = (pp->kp_lwp.kl_uticks + pp->kp_lwp.kl_sticks) / 1000000; /* calculate the base for cpu percentages */ pct = pctdouble(pp->kp_lwp.kl_pctcpu); /* generate "STATE" field */ switch (state = pp->kp_stat) { case LSRUN: if (smpmode && (pp->kp_lwp.kl_tdflags & TDF_RUNNING)) sprintf(status, "CPU%d", pp->kp_lwp.kl_cpuid); else strcpy(status, "RUN"); break; case LSSLEEP: if (pp->kp_lwp.kl_wmesg != NULL) { sprintf(status, "%.6s", pp->kp_lwp.kl_wmesg); break; } /* fall through */ default: if (state >= 0 && state < sizeof(state_abbrev) / sizeof(*state_abbrev)) sprintf(status, "%.6s", state_abbrev[(unsigned char) state]); else sprintf(status, "?%5d", state); break; } /* * idle time 0 - 31 -> nice value +21 - +52 * normal time -> nice value -20 - +20 * real time 0 - 31 -> nice value -52 - -21 * thread 0 - 31 -> nice value -53 - */ switch(pp->kp_lwp.kl_rtprio.type) { case RTP_PRIO_REALTIME: nice = PRIO_MIN - 1 - RTP_PRIO_MAX + pp->kp_lwp.kl_rtprio.prio; break; case RTP_PRIO_IDLE: nice = PRIO_MAX + 1 + pp->kp_lwp.kl_rtprio.prio; break; case RTP_PRIO_THREAD: nice = PRIO_MIN - 1 - RTP_PRIO_MAX - pp->kp_lwp.kl_rtprio.prio; break; default: nice = pp->kp_nice; break; } /* format this entry */ snprintf(fmt, sizeof(fmt), smpmode ? smp_Proc_format : up_Proc_format, (int)pp->kp_pid, namelength, namelength, get_userid(pp->kp_ruid), (int)pp->kp_lwp.kl_prio, (int)nice, format_k(PROCSIZE(pp)), format_k(pagetok(pp->kp_vm_rssize)), status, (int)(smpmode ? pp->kp_lwp.kl_cpuid : 0), format_time(cputime), 100.0 * weighted_cpu(pct, pp), 100.0 * pct, cmdlength, printable(pp->kp_comm)); /* return the result */ return(fmt); } /* * check_nlist(nlst) - checks the nlist to see if any symbols were not * found. For every symbol that was not found, a one-line * message is printed to stderr. The routine returns the * number of symbols NOT found. */ static int check_nlist(register struct nlist *nlst) { register int i; /* check to see if we got ALL the symbols we requested */ /* this will write one line to stderr for every symbol not found */ i = 0; while (nlst->n_name != NULL) { if (nlst->n_type == 0) { /* this one wasn't found */ (void) fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name); i = 1; } nlst++; } return(i); } /* comparison routines for qsort */ /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): WAIT, zombie, sleep, stop, start, run. The * array declaration below maps a process state index into a number * that reflects this ordering. */ static unsigned char sorted_state[] = { 0, /* not used */ 3, /* sleep */ 1, /* ABANDONED (WAIT) */ 6, /* run */ 5, /* start */ 2, /* zombie */ 4 /* stop */ }; #define ORDERKEY_PCTCPU \ if (lresult = (long) p2->kp_lwp.kl_pctcpu - (long) p1->kp_lwp.kl_pctcpu, \ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) #define CPTICKS(p) (p->kp_lwp.kl_uticks + p->kp_lwp.kl_sticks) #define ORDERKEY_CPTICKS \ if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \ CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0) #define ORDERKEY_STATE \ if ((result = sorted_state[(unsigned char) p2->kp_stat] - \ sorted_state[(unsigned char) p1->kp_stat]) == 0) #define ORDERKEY_PRIO \ if ((result = p2->kp_lwp.kl_prio - p1->kp_lwp.kl_prio) == 0) #define ORDERKEY_KTHREADS \ if ((result = (p1->kp_lwp.kl_pid == 0) - (p2->kp_lwp.kl_pid == 0)) == 0) #define ORDERKEY_KTHREADS_PRIO \ if ((result = p2->kp_lwp.kl_tdprio - p1->kp_lwp.kl_tdprio) == 0) #define ORDERKEY_RSSIZE \ if ((result = p2->kp_vm_rssize - p1->kp_vm_rssize) == 0) #define ORDERKEY_MEM \ if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 ) /* compare_cpu - the comparison function for sorting by cpu percentage */ int proc_compare(struct proc **pp1, struct proc **pp2) { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return(result); } /* compare routines */ /* compare_size - the comparison function for sorting by total memory usage */ int compare_size(struct proc **pp1, struct proc **pp2) { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_MEM ORDERKEY_RSSIZE ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ; return(result); } /* compare_res - the comparison function for sorting by resident set size */ int compare_res(struct proc **pp1, struct proc **pp2) { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_RSSIZE ORDERKEY_MEM ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ; return(result); } /* compare_time - the comparison function for sorting by total cpu time */ int compare_time(struct proc **pp1, struct proc **pp2) { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_KTHREADS ORDERKEY_KTHREADS_PRIO ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return(result); } /* compare_prio - the comparison function for sorting by cpu percentage */ int compare_prio(struct proc **pp1, struct proc **pp2) { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_KTHREADS ORDERKEY_KTHREADS_PRIO ORDERKEY_PRIO ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_RSSIZE ORDERKEY_MEM ; return(result); } /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(int pid) { register int cnt; register struct kinfo_proc **prefp; register struct kinfo_proc *pp; prefp = pref; cnt = pref_len; while (--cnt >= 0) { pp = *prefp++; if (pp->kp_pid == (pid_t)pid) { return((int)pp->kp_ruid); } } return(-1); } /* * swapmode is based on a program called swapinfo written * by Kevin Lahey . */ int swapmode(int *retavail, int *retfree) { int n; int pagesize = getpagesize(); struct kvm_swap swapary[1]; *retavail = 0; *retfree = 0; #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) n = kvm_getswapinfo(kd, swapary, 1, 0); if (n < 0 || swapary[0].ksw_total == 0) return(0); *retavail = CONVERT(swapary[0].ksw_total); *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); n = (int)((double)swapary[0].ksw_used * 100.0 / (double)swapary[0].ksw_total); return(n); }